PERFORMANCE COMPARISON OF FACENET PYTORCH AND KERAS FACENET METHODS FOR MULTI FACE RECOGNITION

Authors

  • Dedy Fitriady Universitas Multi Data Palembang
  • Samsuryadi Universitas Sriwijaya
  • Anggina Primanita Universitas Sriwijaya

DOI:

https://doi.org/10.59562/metrik.v22i1.5899

Keywords:

Multi-face recognition; MTCNN; Facenet; SVM; Pytorch; Keras.

Abstract

Face recognition has become an important technology in various applications, but challenges arise when multiple faces must be recognized simultaneously in a single image or video frame. This study develops a multi-face recognition system using the Multi-Task Cascaded Convolutional Neural Network (MTCNN) method for face detection, Pytorch Facenet and Keras Facenet for recognition, and Support Vector Machine (SVM) for classification. Using a dataset of 1000 images from 10 classes, this study compares the performance of Pytorch Facenet and Keras Facenet in terms of speed, memory usage, and accuracy. The results show that Pytorch Facenet is faster with an average of 0.15 seconds per image compared to Keras Facenet which requires 0.86 seconds per image, and is more efficient in memory usage with 384.19 MB lower. However, Pytorch Facenet uses 3% more CPU. In addition, in terms of accuracy, Pytorch Facenet shows a more stable and consistent confidence score. In conclusion, Pytorch Facenet proves to be more efficient and reliable for multi-face recognition, although it requires further CPU optimization for more optimal use in real application scenarios.

Downloads

Download data is not yet available.

References

Y. Pratama, M. Istoningtyas, and E. Rasywir, “Pengujian Algoritma MTCNN (Multi-task Cascaded Convolutional Neural Network) untuk Sistem Pengenalan Wajah,” J. MEDIA Inform. BUDIDARMA, vol. 3, no. 3, p. 240, Jul. 2019, doi: 10.30865/mib.v3i3.1324.

F. Cahyono, W. Wirawan, and R. Fuad Rachmadi, “Face recognition system using facenet algorithm for employee presence,” in 4th International Conference on Vocational Education and Training, ICOVET 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 57–62. doi: 10.1109/ICOVET50258.2020.9229888.

N. Safaat and N. Kurniawan, “Aplikasi Smart Presensi Menggunakan Multiple Face Recognition,” 2020.

F. M. Andiani and B. Soewito, “Face recognition for work attendance using multitask convolutional neural network (MTCNN) and pre-trained facenet,” ICIC Express Lett., vol. 15, no. 1, pp. 57–65, Jan. 2021, doi: 10.24507/icicel.15.01.57.

S. G. C, K. H. S, S. Shirahatti, and S. R. Bangari, “Face Recognition System For Real Time Applications Using SVM Combined With Facenet And MTCNN,” Int. J. Electr. Eng. Technol., vol. 12, no. 6, pp. 328–335, 2021, doi: 10.34218/IJEET.12.6.2021.031.

Miftakhurrokhmat, R. A. Rajagede, and R. Rahmadi, “Presensi Kelas Berbasis Pola Wajah, Senyum dan Wi-Fi Terdekat dengan Deep Learning,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 31–38, Feb. 2021, doi: 10.29207/resti.v5i1.2575.

N. C. Basjaruddin, E. Rakhman, Y. Sudarsa, M. B. Z. Asyikin, and S. Permana, “Attendance System with Face Recognition, Body Temperature, and Use of Mask using Multi-Task Cascaded Convolutional Neural Network (MTCNN) Method,” Green Intell. Syst. Appl., vol. 2, no. 2, pp. 71–83, Oct. 2022, doi: 10.53623/gisa.v2i2.109.

M. A. Maulana C and Y. Hero Prasetyo Isnomo, “Design and Development of Student Attention System using Face Recognition Based on MTCNN and FaceNet,” J. Telecommun. Netw., vol. 13, no. 3, 2023.

Z. Yang, W. Ge, and Z. Zhang, “Face recognition based on MTCNN and integrated application of FaceNet and LBP method,” in Proceedings - 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture, AIAM 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 95–98. doi: 10.1109/AIAM50918.2020.00024.

I. William, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, H. A. Santoso, and C. A. Sari, “Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” in Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019, Institute of Electrical and Electronics Engineers Inc., Oct. 2019. doi: 10.1109/ICIC47613.2019.8985786.

V. Sari, L, A. Musthafa, and T. Harmini, “Pengenalan Ekspresi Wajah Secara Realtime Menggunakan Transfer Learning Pada Facenet,” Sendiko, pp. 1–7, 2022.

M. Sya’roni Mujahidin, S. T. Misbahuddin, and B. Kanata, “Rancang Bangun Sistem Pengenalan Wajah Berbasis Residual Network Design of Face Recognition Base on Residual Network.”

L. Hoki, V. Augusman, and D. Aryanto, “Penerapan Machine Learning Untuk Mengategorikan Sampah Plastik Rumah Tangga,” 2021. [Online]. Available: http://ejournal.stmik-time.ac.id

A. Santoso and G. Ariyanto, “Implementasi Deep Learning berbasis Keras untuk Pengenalan Wajah,” Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 15–21, Jun. 2018, doi: 10.23917/emitor.v18i01.6235.

A. Amandri Achyar, A. Muhammud Olow, M. Rizky Perdana, A. Sundawijaya, and A. Dhiyaanisafa Goenawan, “Identifikasi Ras Wajah dengan Menggunakan Metode Deep Learning Model Keras,” 2022.

R. Achmad Rizal, I. Sanjaya Girsang, and S. Apriyadi Prasetiyo, “Klasifikasi Wajah Menggunakan Support Vector Machine (SVM),” Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 3, no. 2, 2019.

Downloads

Published

2024-12-18