AUTOMATIC CONTROL SYSTEM: AUTOMATIC WHEELCHAIR WITH INTUITIF SENSOR ELECTRONIC WHEEL DRIVE WITH ELECTROMYOGRAM DETECTION AND NAVIGATION
DOI:
https://doi.org/10.59562/metrik.v22i1.5986Keywords:
Wheelchair; EMG Sensor; IMU Sensor; Internet of ThingsAbstract
This research aims to address the needs of individuals with tetraplegia, with the expectation that it can contribute to the development of automatic control systems and provide insights for the fields of healthcare and education. The control system in the wheelchair reads muscle contractions via electrodes attached to the muscles. These electrodes serve as muscle sensors. The muscle sensor data, often referred to as EMG, is 10-bit. The EMG sensor in the wheelchair shows that the wheelchair's movement is detected as moving forward when the data value generated by the EMG sensor reaches the minimum threshold of 589. The wheelchair moves forward when the Y-axis value is positive and moves backward when the Y-axis value is negative. The wheelchair will turn right or left when the X-axis value is positive or negative, respectively. Thus, when the X value is 20 and the Y value is 20, the wheelchair will move forward and turn right. The data collected by the IMU sensor can be wirelessly transmitted to an IoT (Internet of Things)-based system. This data can then be monitored through a browser on a laptop or PC, as well as through a smartphone.
Downloads
References
V. Guiraudon, “European Court of Justice,” Immigr. Asylum [3 Vol. From 1900 to Present [3 Vol., vol. 1, no. October, pp. 217–219, 2005, doi: 10.54648/ecta2007029.
J. Hays and H. Reinders, “Sustainable learning and education: A curriculum for the future,” Int. Rev. Educ., vol. 66, no. 1, pp. 29–52, 2020, doi: 10.1007/s11159-020-09820-7.
M. E. Meadows, “Geography Education for Sustainable Development,” Geogr. Sustain., vol. 1, no. 1, pp. 88–92, 2020, doi: 10.1016/j.geosus.2020.02.001.
G. Bravo, “The Human Sustainable Development Index: New calculations and a first critical analysis,” Ecol. Indic., vol. 37, no. PART A, pp. 145–150, 2014, doi: 10.1016/j.ecolind.2013.10.020.
J. B. Weinberg and X. Yu, “Robotics in education: Low-cost platforms for teaching integrated systems,” IEEE Robot. Autom. Mag., vol. 10, no. 2, pp. 4–6, 2003, doi: 10.1109/MRA.2003.1213610.
I. Santana, M. Ferre, E. Izaguirre, R. Aracil, and L. Hernandez, “Remote laboratories for education and research purposes in automatic control systems,” IEEE Trans. Ind. Informatics, vol. 9, no. 1, pp. 547–556, 2013, doi: 10.1109/TII.2011.2182518.
Y. Mirza and A. Firdaus, “Sistem Kendali Otomatis Berbasis Short Message Service(Sms) Gateway,” JUPITER (Jurnal Penelit. Ilmu Dan Teknol. Komputer), vol. 7, no. 2, pp. 45–53, 2015.
I. Sukoco, R. Setiadi, R. Ambar, K. Ursit Gendroyono, and S. Artikel, “Journal of Mechanical Engineering Learning RANCANG BANGUN MEDIA SISTEM OTOMASI BERBASIS PLC I N F O ARTIKEL,” Jmel 1, vol. 2, no. 2, 2023.
D. L. Zariatin, E. H. O. Tambunan, and A. Suwandi, “Rancang Bangun Simulator Sistem Pengepakan Produk Berbasis Progammable Logic Control,” Sintek, vol. 10, pp. 28–35, 2016.
Y. Nishida and N. Okada, Cell-Type Modular Plant Factory (V 4), no. V 4. Elsevier Inc., 2018. doi: 10.1016/B978-0-12-813973-8.00023-3.
M. Darmawan, J. F. B. Prasetyo, and A. D. Soewono, “Rancang Bangun Kursi Roda Bermotor Elektrik Dengan Sistem Pengendalian Gestur Untuk Penyandang Tetraplegic,” J. Sci. Appl. Technol., vol. 7, no. 2, p. 57, 2023, doi: 10.35472/jsat.v7i2.1447.
L. Muhidin, “Merancang dan Memodelkan Kursi Roda yang Dikendalikan Suara yang Digabungkan dengan Otomatisasi Rumah,” Fidel. J. Tek. Elektro, vol. 3, no. 3, pp. 59–62, 2021, doi: 10.52005/fidelity.v3i3.99.
S. P. Levine, D. A. Bell, L. A. Jaros, R. C. Simpson, Y. Koren, and J. Borenstein, “The NavChair Assistive Wheelchair Navigation System,” IEEE Trans. Rehabil. Eng., vol. 7, no. 4, pp. 443–451, 1999, doi: 10.1109/86.808948.
R. A. Cooper, “Intelligent Control of Power Wheelchairs,” IEEE Eng. Med. Biol. Mag., vol. 14, no. 4, pp. 423–431, 1995, doi: 10.1109/51.395325.
M. Mujiarto, A. Sambas, G. Gundara, and S. Ula, “PELATIHAN ROBOTIKA BERBASIS ANDROID UNTUK MENUMBUHKAN INOVASI DAN KREATIVITAS DI SMP 11 BANDUNG,” Martabe J. Pengabdi. Kpd. Masy., vol. 2, no. 1, p. 8, Jun. 2019, doi: 10.31604/jpm.v2i1.8-12.
Z. Arifin, A. D. Pambudi, A. J. Tamamy, N. Islahudin, H. Pamungkas, and M. A. Heryanto, “Pelatihan Robotika Untuk Pengenalan Dunia Robotik Bagi Siswa SMA KOLESE LOYOLA Semarang,” Abdimasku J. Pengabdi. Masy., vol. 6, no. 1, p. 69, 2023, doi: 10.33633/ja.v6i1.846.
R. Putra, “Monitoring dan kontrol suhu lampu untuk budidaya maggot bsf berbasis iot,” pp. 1–9, 2021.
I. P. Agustin et al., “Kendali Motor DC Pada Rancang Bangun Kursi Roda Berbasis Joystick dan YOLO ( You Only Look Once ) Kendali Motor DC Pada Rancang Bangun Kursi Roda Berbasis Joystick dan YOLO ( You Only Look Once ) Widi Aribowo , Reza Rahmadian , Ayusta Lukita Wardani,” pp. 82–87, 2023.
H. M. R. T. Bandara, K. S. Priyanayana, D. P. Chandima, and A. G. B. P. Jayasekara, “Hybrid Navigation Decision Control Mechanism for Intelligent Wheel-Chair,” IEEE Access, vol. 11, pp. 118558–118576, 2023, doi: 10.1109/ACCESS.2023.3318477.
R. Nafis, I. Komang Somawirata, I. S. Faradisa, T. Elektro, I. Malang, and M. Indonesia, “DESAIN OBSTACLE DETECTION DENGAN MENGGUNAKAN METODE YOLOv4 YANG DILENGKAPI DENGAN SENSOR JARAK SEBAGAI KEAMANAN KURSI RODA ELEKTRIK,” vol. 08, pp. 232–243, 2024.
B. Daveler, B. Gebrosky, G. G. Grindle, and R. A. Cooper, “Development of the Pneuchair: Pneumatic-Powered Wheelchair,” Technol. Innov., vol. 20, no. 1, pp. 11–19, 2019, doi: 10.21300/20.1-2.2018.11.
N. Thongpance and P. Chotikunnan, “Design and Construction of Electric Wheelchair with Mecanum Wheel,” J. Robot. Control, vol. 4, no. 1, pp. 71–82, 2023, doi: 10.18196/jrc.v4i1.17095.